Муниципальное бюджетное общеобразовательное учреждение «Лицей «Технический» имени С.П. Королева» городского округа Самара

Рассмотрено на заседании МО учителей информатики и технологии протокол № 1 от 26.08.2020

Председатель МО

подпись

Утверждаю Директор МБОУ лицея М60 У пурк Технический» Технический и.А.Бочков нодпись О. Самара

Приказ № 448 от 28.08.2020

Рабочая программа

по предмету «Информатика» ФГОС

Уровень образования основное общее 5-9 классы

Уровень освоения базовый

Срок реализации 5 лет (5,6,7,8,9 классы)

Количество часов по учебному плану 34 (5-8 классы) в год, 1 в неделю

68 (9 класс) в год, 2 в неделю

Составлена в соответствии с авторскими программами Л.Л. Босовой:

«Примерная рабочая программа по информатике для 5-6 классов». - М.: БИНОМ.

Лаборатория знаний, 2016».

«Примерная рабочая программа по информатике для 7-9 классов». - М.: БИНОМ. Лаборатория знаний, 2016».

Учебники:

Босова Л.Л. Информатика: учебник для 5 класса / Л.Л. Босова, А.Ю. Босова. – М.:

БИНОМ. Лаборатория знаний, 2020.

Босова Л.Л. Информатика: учебник для 6 класса / Л.Л. Босова, А.Ю. Босова. - М.: БИНОМ. Лаборатория знаний, 2019.

Босова Л.Л. Информатика: учебник для 7 класса / Л.Л. Босова, А.Ю. Босова. – М.: БИНОМ. Лаборатория знаний, 2016.

Босова Л.Л. Информатика: учебник для 8 класса / Л.Л. Босова, А.Ю. Босова. – М.:

БИНОМ. Лаборатория знаний, 2016. Босова Л.Л. Информатика: учебник для 9 класса / Л.Л. Босова, А.Ю. Босова. – М.:

БИНОМ. Лаборатория знаний, 2017.

Составители: Бронникова Е.Д., Дехтярь О.В., Путилова Е.В., Сенькина О.С.

Проверено

Зам. директора по УР

полпись

«28» августа 2020

Самара

2020

Пояснительная записка

Программа по информатике для основной школы составлена в соответствии с: требованиями Федерального государственного образовательного стандарта основного общего образования (ФГОС ООО); требованиями к результатам освоения основной образовательной программы (личностным, метапредметным, предметным); основными подходами к развитию и формированию универсальных учебных действий (УУД) для основного общего образования. В ней соблюдается преемственность с федеральным государственным образовательным стандартом начального общего образования; учитываются возрастные и психологические особенности школьников, обучающихся на ступени основного общего образования, учитываются межпредметные связи.

Цели изучения информатики в основной школе должны:

- быть в максимальной степени ориентированы на реализацию потенциала предмета в достижении современных образовательных результатов;
 - конкретизироваться с учетом возрастных особенностей учащихся.

Изучение информатики вносит значительный вклад в достижение главных целей и **задач** основного общего образования, способствуя

в 5–6 классах:

- развитию общеучебных умений и навыков на основе средств и методов информатики и ИКТ, в том числе овладению умениями работать с различными видами информации, самостоятельно планировать и осуществлять индивидуальную и коллективную информационную деятельность, представлять и оценивать ее результаты;
- целенаправленному формирование таких общеучебных понятий, как «объект», «система», «модель», «алгоритм» и др.;
- воспитанию ответственного и избирательного отношения к информации; развитию познавательных, интеллектуальных и творческих способностей учащихся;

в 7-9 классах:

- формированию целостного мировоззрения, соответствующего современному уровню развития науки и общественной практики за счет развития представлений об информации как важнейшем стратегическом ресурсе развития личности, государства, общества; понимания роли информационных процессов в современном мире;
- совершенствованию общеучебных и общекультурных навыков работы с информацией в процессе систематизации и обобщения имеющихся и получения новых знаний, умений и способов деятельности в области информатики и ИКТ; развитию навыков самостоятельной учебной деятельности школьников (учебного проектирования, моделирования, исследовательской деятельности и т.д.);
- воспитанию ответственного и избирательного отношения к информации с учетом правовых и этических аспектов ее распространения, воспитанию стремления к продолжению образования и созидательной деятельности с применением средств ИКТ.

Рабочая программа составлена на основе авторских программ Л.Л. Босовой «Примерная рабочая программа по информатике для 5-6 классов», «Примерная рабочая программа по информатике для 7-9 классов». - М.: БИНОМ. Лаборатория знаний, 2016». Учебники «Информатика» для 5-9 классов Босовой Л.Л. разработаны авторами с учетом целенаправленного формирования и развития универсальных учебных действий.

Это определяется их структурой, содержанием, системой заданий и практических работ.В учебниках представлена логика обучения пропедевтическому курсу информатики и ИКТ в 5-6 классах, которая отражает идею о том, что данный этап является наиболее благоприятным для формирования инструментальных (операционных) ресурсов развития личности, что позволяет достичь метапредметных образовательных результатов (на определенном уровне) на базе информатике и информационных технологий. Таким образом, являясь пропедевтическим по отношению к базовому курсу, обучение информатике и ИКТ по программе Босовой Л.Л. предоставляет возможность организовать деятельность целенаправленного развития универсальных учебных действий, которое может быть продолжено в 7-9 классах.

Место учебного предмета в учебном плане

В учебном плане МБОУ лицея «Технический» информатика представлена как расширенный курс в 5-9 классах (в 5-8 классах - по одному часу в неделю, в 9 классе – по 2 часа в неделю, всего 204 часа).

Планируемые результаты освоения информатики

Планируемые результаты, характеризующие систему учебных действий в отношении опорного учебного материала, размещены в рубрике «Выпускник научится». Они показывают, какой уровень освоения опорного учебного материала ожидается от выпускника. Эти результаты потенциально достигаемы большинством учащихся и выносятся на итоговую оценку как задания базового уровня (исполнительская компетентность) или задания повышенного уровня (зона ближайшего развития).

Планируемые результаты, характеризующие систему учебных действий в отношении знаний, умений, навыков, расширяющих и углубляющих опорную систему, размещены в рубрике «Выпускник получит возможность научиться». Эти результаты достигаются отдельными мотивированными и способными учащимися; они не отрабатываются со всеми группами учащихся в повседневной практике, но могут включаться в материалы итогового контроля.

Личностные и метапредметныерезультаты освоения информатики 5-6 класс

- *Личностные результаты* это сформировавшаяся в образовательном процессе система ценностных отношений учащихся к себе, другим участникам образовательного процесса, самому образовательному процессу, объектам познания, результатам образовательной деятельности. Основными *личностными результатами*, формируемыми при изучении информатики в основной школе, являются:
- наличие представлений об информации как важнейшем стратегическом ресурсе развития личности, государства, общества;
 - понимание роли информационных процессов в современном мире;
- владение первичными навыками анализа и критичной оценки получаемой информации;
 - ответственное отношение к информации с учетом правовых и этических

аспектов ее распространения;

- развитие чувства личной ответственности за качество окружающей информационной среды;
- способность увязать учебное содержание с собственным жизненным опытом, понять значимость подготовки в области информатики и ИКТ в условиях развития информационного общества;
- готовность к повышению своего образовательного уровня и продолжению обучения с использованием средств и методов информатики и ИКТ;
- способность и готовность к общению и сотрудничеству со сверстниками и взрослыми в процессе образовательной, общественно-полезной, учебно-исследовательской, творческой деятельности;
- способность и готовность к принятию ценностей здорового образа жизни за счет знания основных гигиенических, эргономических и технических условий безопасной эксплуатации средств ИКТ.

Метапредметные результаты— освоенные обучающимися на базе одного, нескольких или всех учебных предметов способы деятельности, применимые как в рамках образовательного процесса, так и в других жизненных ситуациях. Основными **метапредметными** результатами, формируемыми при изучении информатики в основной школе, являются:

- владение общепредметными понятиями «объект», «система», «модель», «алгоритм», «исполнитель» и др.;
- владение информационно-логическими умениями: определять понятия, создавать обобщения, устанавливать аналогии, классифицировать, самостоятельно выбирать основания и критерии для классификации, устанавливать причинно-следственные связи, строить логическое рассуждение, умозаключение (индуктивное, дедуктивное и по аналогии) и делать выводы;
- владение умениями самостоятельно планировать пути достижения целей; соотносить свои действия с планируемыми результатами, осуществлять контроль своей деятельности, определять способы действий в рамках предложенных условий, корректировать свои действия в соответствии с изменяющейся ситуацией; оценивать правильность выполнения учебной задачи;
- владение основами самоконтроля, самооценки, принятия решений и осуществления осознанного выбора в учебной и познавательной деятельности;
- владение основными универсальными умениями информационного характера, такими как постановка и формулирование проблемы; поиск и выделение необходимой информации, применение методов информационного поиска; структурирование и визуализация информации; выбор наиболее эффективных способов решения задач в зависимости от конкретных условий; самостоятельное создание алгоритмов деятельности при решении проблем творческого и поискового характера;
- владение информационным моделированием как основным методом приобретения знаний: умение преобразовывать объект из чувственной формы в пространственно-графическую или знаково-символическую модель; умение строить разнообразные информационные структуры для описания объектов; умение «читать» таблицы, графики, диаграммы, схемы и т. д., самостоятельно перекодировывать информацию из одной знаковой системы в другую; умение выбирать форму

представления информации в зависимости от стоящей задачи, проверять адекватность модели объекту и цели моделирования;

• ИКТ-компетентность — широкий спектр умений и навыков использования средств информационных и коммуникационных технологий для сбора, хранения, преобразования и передачи различных видов информации, навыки создания личного информационного пространства (обращение с устройствами ИКТ; фиксация изображений и звуков; создание письменных сообщений; создание графических объектов; создание музыкальных и звуковых сообщений; создание, восприятие и использование гипермедиа сообщений; коммуникация и социальное взаимодействие; поиск и организация хранения информации; анализ информации).

Предметные результатыосвоения информатики 5-6 класс

- Предметные результатывключают: освоенные обучающимися в ходе изучения учебного предмета умения, специфические для данной предметной области, виды деятельности по получению нового знания в рамках учебного предмета, его преобразованию и применению в учебных, учебно-проектных и социально-проектных ситуациях, формирование научного типа мышления, научных представлений о ключевых теориях, типах и видах отношений, владение научной терминологией, ключевыми понятиями, методами и приемами. В соответствии с Федеральным государственным образовательным стандартом основного общего образования основные предметные результаты изучения информатики в основной школе отражают:
- формирование информационной и алгоритмической культуры; формирование представления о компьютере как универсальном устройстве обработки информации; развитие основных навыков и умений использования компьютерных устройств;
- формирование представления об основных изучаемых понятиях, таких как информация, алгоритм, модель, и их свойствах;
- развитие алгоритмического мышления, необходимого для профессиональной деятельности в современном обществе; развитие умений составлять и записывать алгоритм для конкретного исполнителя; формирование знаний об алгоритмических конструкциях, логических значениях и операциях; знакомство с одним из языков программирования и основными алгоритмическими структурами линейной, условной и циклической;
- формирование умений формализации и структурирования информации, умения выбирать способ представления данных в соответствии с поставленной задачей таблицы, схемы, графики, диаграммы, с использованием соответствующих программных средств обработки данных;
- формирование навыков и умений безопасного и целесообразного поведения при работе с компьютерными программами и в Интернете, умения соблюдать нормы информационной этики и права.

Раздел 1. Информация вокруг нас

Выпускник научится:

• понимать и правильно применять на бытовом уровне понятия «информация», «информационный объект»;

- приводить примеры передачи, хранения и обработки информации в деятельности человека, в живой природе, обществе, технике;
 - приводить примеры древних и современных информационных носителей;
- классифицировать информацию по способам ее восприятия человеком, по формам представления на материальных носителях;
 - кодировать и декодировать сообщения, используя простейшие коды;
- определять, информативно или нет некоторое сообщение, если известны способности конкретного субъекта к его восприятию.

Выпускник получит возможность:

- сформировать представление об информации как одном из основных понятий современной науки, об информационных процессах и их роли в современном мире;
 - сформировать представление о способах кодирования информации;
- научиться преобразовывать информацию по заданным правилам и путем рассуждений;
- научиться решать логические задачи на установление соответствия с использованием таблиц;
- научиться приводить примеры единичных и общих понятий, отношений между понятиями;
- научиться для объектов окружающей действительности указывать их признаки свойства, действия, поведение, состояния;
- научиться называть отношения, связывающие данный объект с другими объектами;
- научиться осуществлять деление заданного множества объектов на классы по заданному или самостоятельно выбранному признаку основанию классификации;
- научиться приводить примеры материальных, нематериальных и смешанных систем.

Раздел 2. Информационные технологии

Выпускник научится:

- определять устройства компьютера (основные и подключаемые) и выполняемые ими функции;
 - различать программное и аппаратное обеспечение компьютера;
 - запускать на выполнение программу, работать с ней, закрывать программу;
 - создавать, переименовывать, перемещать, копировать и удалять файлы;
- работать с основными элементами пользовательского интерфейса: использовать меню, обращаться за справкой, работать с окнами (изменять размеры и перемещать окна, реагировать на диалоговые окна);
 - вводить информацию в компьютер с помощью клавиатуры и мыши;
- выполнять арифметические вычисления с помощью программы Калькулятор;
- применять текстовый редактор для набора, редактирования и форматирования простейших текстов на русском и иностранном языках;
- выделять, перемещать и удалять фрагменты текста; создавать тексты с повторяющимися фрагментами;

- использовать простые способы форматирования (выделение жирным шрифтом, курсивом, изменение величины шрифта) текстов;
 - создавать и форматировать списки;
 - создавать, форматировать и заполнять данными таблицы;
 - создавать круговые и столбиковые диаграммы;
- применять простейший графический редактор для создания и редактирования простых рисунков;
- использовать основные приемы создания презентаций в редакторах презентаций;
- осуществлять поиск информации в сети Интернет с использованием простых запросов (по одному признаку);
- ориентироваться на интернет-сайтах (нажать указатель, вернуться, перейти на главную страницу);
- соблюдать требования к организации компьютерного рабочего места, требования безопасности и гигиены при работе со средствами ИКТ.

Выпускник получит возможность:

- овладеть приемами квалифицированного клавиатурного письма;
- научиться систематизировать (упорядочивать) файлы и папки;
- сформировать представления об основных возможностях графического интерфейса и правилах организации индивидуального информационного пространства;
- расширить знания о назначении и функциях программного обеспечения компьютера; приобрести опыт решения задач из разных сфер человеческой деятельности с применением средств информационных технологий;
- научиться создавать объемные текстовые документы, включающие списки, таблицы, диаграммы, рисунки;
- научиться осуществлять орфографический контроль в текстовом документе с помощью средств текстового процессора;
- научиться оформлять текст в соответствии с заданными требованиями к шрифту, его начертанию, размеру и цвету, к выравниванию текста;
- научиться видоизменять готовые графические изображения с помощью средств графического редактора;
- научиться создавать сложные графические объекты с повторяющимися и/или преобразованными фрагментами;
- научиться создавать на заданную тему мультимедийную презентацию с гиперссылками, слайды которой содержат тексты, звуки, графические изображения; демонстрировать презентацию на экране компьютера или с помощью проектора;
- научиться работать с электронной почтой (регистрировать почтовый ящик и пересылать сообщения);
- научиться сохранять для индивидуального использования найденные в сети Интернет материалы;
- расширить представления об этических нормах работы с информационными объектами.

Раздел 3. Информационное моделирование

Выпускник научится:

- понимать сущность понятий «модель», «информационная модель»;
- различать натурные и информационные модели, приводить их примеры;
- «читать» информационные модели (простые таблицы, круговые и столбиковые диаграммы, схемы и др.), встречающиеся в повседневной жизни;
- перекодировывать информацию из одной пространственно-графической или знаково-символической формы в другую, в том числе использовать графическое представление (визуализацию) числовой информации;
- строить простые информационные модели объектов из различных предметных областей.

Выпускник получит возможность:

- сформировать начальные представления о назначении и области применения моделей; о моделировании как методе научного познания;
- научиться приводить примеры образных, знаковых и смешанных информационных моделей;
- познакомиться с правилами построения табличных моделей, схем, графов, деревьев;
- научиться выбирать форму представления данных (таблица, схема, график, диаграмма, граф, дерево) в соответствии с поставленной задачей.

Раздел 4. Алгоритмика

Выпускник научится:

- понимать смысл понятия «алгоритм», приводить примеры алгоритмов;
- понимать термины «исполнитель», «формальный исполнитель», «среда исполнителя», «система команд исполнителя»; приводить примеры формальных и неформальных исполнителей;
 - осуществлять управление имеющимся формальным исполнителем;
- понимать правила записи и выполнения алгоритмов, содержащих алгоритмические конструкции «следование», «ветвление», «цикл»;
- подбирать алгоритмическую конструкцию, соответствующую заданной ситуации;
- исполнять линейный алгоритм для формального исполнителя с заданной системой команд;
- разрабатывать план действий для решения задач на переправы, переливания и пр.

Выпускник получит возможность:

- научиться исполнять алгоритмы, содержащие ветвления и повторения, для формального исполнителя с заданной системой команд;
- научиться по данному алгоритму определять, для решения какой задачи он предназначен;
- научиться разрабатывать в среде формального исполнителя короткие алгоритмы, содержащие базовые алгоритмические конструкции и вспомогательные алгоритмы.

Личностные и метапредметные результатыосвоения информатики 7-9 класс

Личностные результаты — сформировавшаяся в образовательном процессе система ценностных отношений учащихся к себе, другим участникам образовательного

процесса, самому образовательному процессу, объектам познания, результатам образовательной деятельности. Основными *личностными результатами*, формируемыми при изучении информатики в основной школе, являются:

- наличие представлений об информации как важнейшем стратегическом ресурсе развития личности, государства, общества;
 - понимание роли информационных процессов в современном мире;
- владение первичными навыками анализа и критичной оценки получаемой информации;
- ответственное отношение к информации с учетом правовых и этических аспектов ее распространения;
- развитие чувства личной ответственности за качество окружающей информационной среды;
- способность увязать учебное содержание с собственным жизненным опытом, понять значимость подготовки в области информатики и ИКТ в условиях развития информационного общества;
- готовность к повышению своего образовательного уровня и продолжению обучения с использованием средств и методов информатики и ИКТ;
- способность и готовность к общению и сотрудничеству со сверстниками и взрослыми в процессе образовательной, общественно-полезной, учебно-исследовательской, творческой деятельности;
- способность и готовность к принятию ценностей здорового образа жизни благодаря знанию основных гигиенических, эргономических и технических условий безопасной эксплуатации средств ИКТ.

Метапредметные результаты — освоенные обучающимися на базе одного, нескольких или всех учебных предметов способы деятельности, применимые как в рамках образовательного процесса, так и в других жизненных ситуациях. Основными **метапредметными результатами**, формируемыми при изучении информатики в основной школе, являются:

- владение общепредметными понятиями «объект», «система», «модель», «алгоритм», «исполнитель» и др.;
- владение информационно-логическими умениями: определять понятия, создавать обобщения, устанавливать аналогии, классифицировать, самостоятельно выбирать основания и критерии для классификации, устанавливать причинно-следственные связи, строить логическое рассуждение, умозаключение (индуктивное, дедуктивное и по аналогии) и делать выводы;
- владение умениями самостоятельно планировать пути достижения целей; соотносить свои действия с планируемыми результатами, осуществлять контроль своей деятельности, определять способы действий в рамках предложенных условий, корректировать свои действия в соответствии с изменяющейся ситуацией; оценивать правильность выполнения учебной задачи;
- владение основами самоконтроля, самооценки, принятия решений и осуществления осознанного выбора в учебной и познавательной деятельности;
- владение основными универсальными умениями информационного характера, такими как: постановка и формулирование проблемы; поиск и выделение необходимой информации, применение методов информационного поиска;

структурирование и визуализация информации; выбор наиболее эффективных способов решения задач в зависимости от конкретных условий; самостоятельное создание алгоритмов деятельности при решении проблем творческого и поискового характера;

- владение информационным моделированием как основным методом приобретения знаний: умение преобразовывать объект из чувственной формы в пространственно-графическую или знаково-символическую модель; умение строить разнообразные информационные структуры для описания объектов; умение «читать» таблицы, графики, диаграммы, схемы и т. д., самостоятельно перекодировать информацию из одной знаковой системы в другую; умение выбирать форму представления информации в зависимости от стоящей задачи, проверять адекватность модели объекту и цели моделирования;
- ИКТ-компетентность широкий спектр умений и навыков использования средств информационных и коммуникационных технологий для сбора, хранения, преобразования и передачи различных видов информации, навыки создания личного информационного пространства (обращение с устройствами ИКТ; фиксация изображений и звуков; создание письменных сообщений; создание графических объектов; создание музыкальных и звуковых сообщений; создание, восприятие и использование гипермедиасообщений; коммуникация и социальное взаимодействие; поиск и организация хранения информации; анализ информации).

Предметные результатыосвоения информатики7-9 класс

Предметные результаты включают в себя: освоенные обучающимися в ходе изучения учебного предмета умения, специфические для данной предметной области, виды деятельности по получению нового знания в рамках учебного предмета, его преобразованию и применению в учебных, учебно-проектных и социально-проектных ситуациях, формирование научного типа мышления, научных представлений о ключевых теориях, типах и видах отношений, владение научной терминологией, ключевыми понятиями, методами и приемами. В соответствии с федеральным государственным образовательным стандартом общего образования основные предметные результаты изучения информатики в основной школе отражают:

- формирование информационной и алгоритмической культуры; формирование представления о компьютере как универсальном устройстве обработки информации; развитие основных навыков и умений использования компьютерных устройств;
- формирование представления об основных изучаемых понятиях: информация, алгоритм, модель и их свойствах;
- развитие алгоритмического мышления, необходимого для профессиональной деятельности в современном обществе; развитие умений составлять и записывать алгоритм для конкретного исполнителя; формирование знаний об алгоритмических конструкциях, логических значениях и операциях; знакомство с одним из языков программирования и основными алгоритмическими структурами линейной, ветвящейся и циклической;
- формирование умений формализации и структурирования информации, умения выбирать способ представления данных в соответствии с поставленной задачей —

таблицы, схемы, графики, диаграммы, с использованием соответствующих программных средств обработки данных;

• формирование навыков и умений безопасного и целесообразного поведения при работе с компьютерными программами и в Интернете, умения соблюдать нормы информационной этики и права.

Раздел 1. Введение в информатику

Выпускник научится:

- понимать сущность основных понятий предмета: информациа, информационный процесс, информационная система, информационная модель и др.;
- различать виды информации по способам ее восприятия человеком и по способам ее представления на материальных носителях;
- раскрывать общие закономерности протекания информационных процессов в системах различной природы;
- приводить примеры информационных процессов процессов, связанных с хранением, преобразованием и передачей данных в живой природе и технике;
- оперировать понятиями, связанными с передачей данных (источник и приемник данных, канал связи, скорость передачи данных по каналу связи, пропускная способность канала связи);
- декодировать и кодировать информацию при заданных правилах кодирования;
 - оперировать единицами измерения количества информации;
- оценивать количественные параметры информационных объектов и процессов (объем памяти, необходимый для хранения информации; время передачи информации и др.);
- записывать в двоичной системе целые числа от 0 до 1024; переводить целые двоичные числа в десятичную систему счисления; сравнивать, складывать и вычитать числа в двоичной записи;
- составлять логические выражения с операциями И, ИЛИ, НЕ; определять значение логического выражения; строить таблицы истинности;
- использовать терминологию, связанную с графами (вершина, ребро, путь, длина ребра и пути), деревьями (корень, лист, высота дерева) и списками (первый элемент, последний элемент, предыдущий элемент, следующий элемент; вставка, удаление и замена элемента);
- описывать граф с помощью матрицы смежности с указанием длин ребер (знание термина «матрица смежности» необязательно);
- анализировать информационные модели (таблицы, графики, диаграммы, схемы и др.);
- перекодировывать информацию из одной пространственно-графической или знаково-символической формы в другую, в том числе использовать графическое представление (визуализацию) числовой информации;
- выбирать форму представления данных (таблица, схема, график, диаграмма) в соответствии с поставленной задачей;
- строить простые информационные модели объектов и процессов из различных предметных областей с использованием типовых средств (таблиц, графиков,

диаграмм, формул и пр.), оценивать адекватность построенной модели объекту-оригиналу и целям моделирования.

Выпускник получит возможность:

- углубить и развить представления о современной научной картине мира, об информации как одном из основных понятий современной науки, об информационных процессах и их роли в современном мире;
- научиться определять мощность алфавита, используемого для записи сообщения;
- научиться оценивать информационный объем сообщения, записанного символами произвольного алфавита;
- переводить небольшие десятичные числа из восьмеричной и шестнадцатеричной систем счисления в десятичную систему счисления;
- познакомиться с тем, как информация представляется в компьютере, в том числе с двоичным кодированием текстов, графических изображений, звука;
 - научиться решать логические задачи с использованием таблиц истинности;
- научиться решать логические задачи путем составления логических выражений и их преобразования с использованием основных свойств логических операций;
- сформировать представление о моделировании как методе научного познания; о компьютерных моделях и их использовании для исследования объектов окружающего мира;
- познакомиться с примерами использования графов и деревьев при описании реальных объектов и процессов;
- познакомиться с примерами математических моделей и использования компьютеров при их анализе; понять сходства и различия между математической моделью объекта и его натурной моделью, между математической моделью объекта/явления и словесным описанием;
- научиться строить математическую модель задачи выделять исходные данные и результаты, выявлять соотношения между ними.

Раздел 2. Алгоритмы и начала программирования

Выпускник научится:

- понимать смысл понятия «алгоритм» и широту сферы его применения; анализировать предлагаемые последовательности команд на предмет наличия у них таких свойств алгоритма, как дискретность, детерминированность, понятность, результативность, массовость;
- оперировать алгоритмическими конструкциями «следование», «ветвление», «цикл» (подбирать алгоритмическую конструкцию, соответствующую той или иной ситуации; переходить от записи алгоритмической конструкции на алгоритмическом языке к блок-схеме и обратно);
- понимать термины «исполнитель», «формальный исполнитель», «среда исполнителя», «система команд исполнителя» и др.; понимать ограничения, накладываемые средой исполнителя и системой команд, на круг задач, решаемых исполнителем;
- исполнять линейный алгоритм для формального исполнителя с заданной системой команд;

- составлять линейные алгоритмы, число команд в которых не превышает заданного;
- исполнять записанный на естественном языке алгоритм, обрабатывающий цепочки символов;
 - исполнять линейные алгоритмы, записанные на алгоритмическом языке;
- исполнять алгоритмы с ветвлениями, записанные на алгоритмическом языке;
- понимать правила записи и выполнения алгоритмов, содержащих цикл с параметром или цикл с условием продолжения работы;
- определять значения переменных после исполнения простейших циклических алгоритмов, записанных на алгоритмическом языке;
- использовать величины (переменные) различных типов, табличные величины (массивы), а также выражения, составленные из этих величин; использовать оператор присваивания;
- анализировать предложенный алгоритм, например определять, какие результаты возможны при заданном множестве исходных значений;
 - использовать логические значения, операции и выражения с ними;
- записывать на выбранном языке программирования арифметические и логические выражения и вычислять их значения.

Выпускник получит возможность научиться:

- исполнять алгоритмы, содержащие ветвления и повторения, для формального исполнителя с заданной системой команд;
- составлять все возможные алгоритмы фиксированной длины для формального исполнителя с заданной системой команд;
- определять количество линейных алгоритмов, обеспечивающих решение поставленной задачи, которые могут быть составлены для формального исполнителя с заданной системой команд;
- подсчитывать количество тех или иных символов в цепочке символов, являющейся результатом работы алгоритма;
- по данному алгоритму определять, для решения какой задачи он предназначен;
 - познакомиться с использованием в программах строковых величин;
- исполнять записанные на алгоритмическом языке циклические алгоритмы обработки одномерного массива чисел (суммирование всех элементов массива; суммирование элементов массива с определенными индексами; суммирование элементов массива с заданными свойствами; определение количества элементов массива с заданными свойствами; поиск наибольшего/наименьшего элемента массива и др.);
- разрабатывать в среде формального исполнителя короткие алгоритмы, содержащие базовые алгоритмические конструкции;
- разрабатывать и записывать на языке программирования эффективные алгоритмы, содержащие базовые алгоритмические конструкции;
- познакомиться с понятием «управление», с примерами того, как компьютер управляет различными системами.

Раздел 3. Информационныеи коммуникационные технологии

Выпускник научится:

- называть функции и характеристики основных устройств компьютера;
- описывать виды и состав программного обеспечения современных компьютеров;
 - подбирать программное обеспечение, соответствующее решаемой задаче;
 - классифицировать файлы по типу и иным параметрам;
- выполнять основные операции с файлами (создавать, сохранять, редактировать, удалять, архивировать, «распаковывать» архивные файлы);
 - разбираться в иерархической структуре файловой системы;
 - осуществлять поиск файлов средствами операционной системы;
 - применять основные правила создания текстовых документов;
- использовать средства автоматизации информационной деятельности при создании текстовых документов;
- использовать основные приемы обработки информации в электронных таблицах, в том числе вычисления по формулам с относительными, абсолютными и смешанными ссылками, встроенными функциями, сортировку и поиск данных;
 - работать с формулами;
- визуализировать соотношения между числовыми величинами (строить круговую и столбчатую диаграммы);
 - осуществлять поиск информации в готовой базе данных;
 - основам организации и функционирования компьютерных сетей;
- анализировать доменные имена компьютеров и адреса документов в Интернете;
 - составлять запросы для поиска информации в Интернете;
- использовать основные приемы создания презентаций в редакторах презентаций.

Выпускник получит возможность:

- систематизировать знания о принципах организации файловой системы, основных возможностях графического интерфейса и правилах организации индивидуального информационного пространства;
- систематизировать знания о назначении и функциях программного обеспечения компьютера; приобрести опыт решения задач из разных сфер человеческой деятельности с применением средств информационных технологий;
- научиться проводить обработку большого массива данных с использованием средств электронной таблицы;
- расширить представления о компьютерных сетях распространения и обмена информацией, об использовании информационных ресурсов общества с соблюдением соответствующих правовых и этических норм, требований информационной безопасности;
- научиться оценивать возможное количество результатов поиска информации в Интернете, полученных по тем или иным запросам;
- познакомиться с подходами к оценке достоверности информации (оценка надежности источника, сравнение данных из разных источников и в разные моменты времени и т. п.);

- закрепить представления о требованиях техники безопасности, гигиены, эргономики и ресурсосбережения при работе со средствами информационных и коммуникационных технологий;
- сформировать понимание принципов действия различных средств информатизации, их возможностей, технических и экономических ограничений.

Содержание учебного предмета 5-6 класс

Структура содержания общеобразовательного предмета (курса) информатики в 5-6 классах основной школы может быть определена следующими укрупненными тематическими блоками (разделами):

- Информация вокруг нас.
- Информационные технологии.
- Информационное моделирование.
- Алгоритмика.

Раздел 1. Информация вокруг нас

Информация и информатика. Как человек получает информацию. Виды информации по способу получения.

Хранение информации. Память человека и память человечества. Носители информации.

Передача информации. Источник, канал, приемник. Примеры передачи информации. Электронная почта.

Код, кодирование информации. Способы кодирования информации. Метод координат.

Формы представления информации. Текст как форма представления информации. Табличная форма представления информации. Наглядные формы представления информации.

Обработка информации. Разнообразие задач обработки информации. Изменение формы представления информации. Систематизация информации. Поиск информации. Получение новой информации. Преобразование информации по заданным правилам. «Черные ящики». Преобразование информации путем рассуждений. Разработка плана действий и его запись. Задачи на переливания. Задачи на переправы.

Информация и знания. Чувственное познание окружающего мира. Абстрактное мышление. Понятие как форма мышления.

Раздел 2. Информационные технологии

Компьютер — универсальная машина для работы с информацией. Техника безопасности и организация рабочего места.

Основные устройства компьютера, в том числе устройства для ввода информации (текста, звука, изображения) в компьютер.

Компьютерные объекты. Программы и документы. Файлы и папки. Основные правила именования файлов.

Элементы пользовательского интерфейса: рабочий стол; панель задач. Мышь, указатель мыши, действия с мышью. Управление компьютером с помощью мыши. Компьютерные меню. Главное меню. Запуск программ. Окно программы и его компоненты. Диалоговые окна. Основные элементы управления, имеющиеся в

диалоговых окнах.

Ввод информации в память компьютера. Клавиатура. Группы клавиш. Основная позиция пальцев на клавиатуре.

Текстовый редактор. Правила ввода текста. Слово, предложение, абзац. Приемы редактирования (вставка, удаление и замена символов). Фрагмент. Перемещение и удаление фрагментов. Буфер обмена. Копирование фрагментов. Проверка правописания, расстановка переносов. Форматирование символов (шрифт, размер, начертание, цвет). Форматирование абзацев (выравнивание, отступ первой строки, междустрочный интервал и др.). Создание и форматирование списков. Вставка в документ таблицы, ее форматирование и заполнение данными.

Компьютерная графика. Простейший графический редактор. Инструменты графического редактора. Инструменты создания простейших графических объектов. Исправление ошибок и внесение изменений. Работа с фрагментами: удаление, перемещение, копирование. Преобразование фрагментов. Устройства ввода графической информации.

Мультимедийная презентация. Описание последовательно развивающихся событий (сюжет). Анимация. Возможности настройки анимации в редакторе презентаций. Создание эффекта движения с помощью смены последовательности рисунков.

Раздел 3. Информационное моделирование

Объекты и их имена. Признаки объектов: свойства, действия, поведение, состояния. Отношения объектов. Разновидности объектов и их классификация. Состав объектов. Системы объектов.

Модели объектов и их назначение. Информационные модели. Словесные информационные модели. Простейшие математические модели.

Табличные информационные модели. Структура и правила оформления таблицы. Простые таблицы. Табличное решение логических задач.Вычислительные таблицы. Графики и диаграммы. Наглядное представление о соотношении величин. Визуализация многорядных данных.

Многообразие схем. Информационные модели на графах. Деревья.

Раздел 4. Алгоритмика

Понятие исполнителя. Неформальные и формальные исполнители. Учебные исполнители (Черепаха, Кузнечик, Водолей и др.) как примеры формальных исполнителей. Их назначение, среда, режим работы, система команд. Управление исполнителями с помощью команд и их последовательностей.

Что такое алгоритм. Различные формы записи алгоритмов (нумерованный список, таблица, блок-схема). Примеры линейных алгоритмов, алгоритмов с ветвлениями и повторениями (в повседневной жизни, в литературных произведениях, на уроках математики и т. д.).

Составление алгоритмов (линейных, с ветвлениями и циклами) для управления исполнителями Чертежник, Водолей и др.

Учебно-тематический план

№	Название темы	Количество часов			
		общее	теория	практика	
1	Информация вокруг нас	12	10	2	
2	Компьютер	7	2	5	
3	Подготовка текстов на компьютере	8	2	6	
4	Компьютерная графика	6	1	5	
5	Создание мультимедийных объектов	7	1	6	
6	Объекты и системы	8	6	2	
7	Информационные модели	10	5	5	
8	Алгоритмика	10	3	7	
	Итого:	68	30	40	

Содержание учебного предмета 7-9 класс

Структура содержания общеобразовательного предмета (курса) информатики в 7-9 классах основной школы может быть определена следующими укрупненными тематическими блоками (разделами):

- введение в информатику;
- алгоритмы и начала программирования;
- информационные и коммуникационные технологии.

Раздел 1. Введение в информатику

Информация. Информационный объект. Информационный процесс. Субъективные характеристики информации, зависящие от личности получателя информации и обстоятельств получения информации: важность, своевременность, достоверность, актуальность и т. п.

Представление информации. Формы представления информации. Язык как способ представления информации: естественные и формальные языки. Алфавит, мощность алфавита.

Кодирование информации. Исторические примеры кодирования. Универсальность дискретного (цифрового, в том числе двоичного) кодирования. Двоичный алфавит. Двоичный код. Разрядность двоичного кода. Связь разрядности двоичного кода и количества кодовых комбинаций.

Понятие о непозиционных и позиционных системах счисления. Знакомство с двоичной, восьмеричной и шестнадцатеричной системами счисления, запись в них целых десятичных чисел от 0 до 256. Перевод небольших целых чисел из двоичной системы счисления в десятичную. Двоичная арифметика.

Компьютерное представление текстовой информации. Кодовые таблицы. Американский стандартный код для обмена информацией, примеры кодирования букв национальных алфавитов. Представление о стандарте Юникод.

Возможность дискретного представления аудиовизуальных данных (рисунки, картины, фотографии, устная речь, музыка, кинофильмы). Стандарты хранения аудиовизуальной информации.

Размер (длина) сообщения как мера содержащейся в нем

информации. Достоинства и недостатки такого подхода. Другие подходы к измерению количества информации. Единицы измерения количества информации.

Основные виды информационных процессов: хранение, передача и обработка информации. Примеры информационных процессов в системах различной природы; их роль в современном мире.

Хранение информации. Носители информации (бумажные, магнитные, оптические, флеш-память). Качественные и количественные характеристики современных носителей информации: объем информации, хранящейся на носителе; скорость записи и чтения информации. Хранилища информации. Сетевое хранение информации.

Передача информации. Источник, информационный канал, приемник информации. Скорость передачи информации. Пропускная способность канала. Передача информации в современных системах связи.

Обработка информации. Обработка, связанная с получением новой информации. Обработка, связанная с изменением формы, но не изменяющая содержание информации. Поиск информации.

Управление, управляющая и управляемая системы, прямая и обратная связь. Управление в живой природе, обществе и технике.

Модели и моделирование. Понятия натурной и информационной моделей объекта (предмета, процесса или явления). Модели в математике, физике, литературе, биологии и т. д. Использование моделей в практической деятельности. Виды информационных моделей (словесное описание, таблица, график, диаграмма, формула, чертеж, граф, дерево, список и др.) и их назначение. Оценка адекватности модели моделируемому объекту и целям моделирования.

Графы, деревья, списки и их применение при моделировании природных и общественных процессов и явлений.

Компьютерное моделирование. Примеры использования компьютерных моделей при решении научно-технических задач. Представление о цикле компьютерного моделирования, состоящем в построении математической модели, ее программной реализации, проведении компьютерного эксперимента, анализе его результатов, уточнении модели.

Логика высказываний (элементы алгебры логики). Логические значения, операции (логическое отрицание, логическое умножение, логическое сложение), выражения, таблицы истинности.

Раздел 2. Алгоритмы и начала программирования

Понятие исполнителя. Неформальные и формальные исполнители. Учебные исполнители (Робот, Чертежник, Черепаха, Кузнечик, Водолей) как примеры формальных исполнителей. Их назначение, среда, режим работы, система команд.

Понятие алгоритма как формального описания последовательности действий исполнителя при заданных начальных данных. Свойства алгоритмов. Способы записи алгоритмов.

Алгоритмический язык (язык программирования) — формальный язык для записи алгоритмов. Программа — запись алгоритма на конкретном алгоритмическом языке. Непосредственное и программное управление исполнителем.

Линейные алгоритмы. Алгоритмические конструкции, связанные с проверкой условий: ветвление и повторение. Разработка алгоритмов: разбиение задачи на подзадачи, понятие вспомогательного алгоритма.

Понятие простой величины. Типы величин: целые, вещественные, символьные, строковые, логические. Переменные и константы. Знакомство с табличными величинами (массивами). Алгоритм работы с величинами — план целенаправленных действий по проведению вычислений при заданных начальных данных с использованием промежуточных результатов.

Системы программирования. Основные правила одного из процедурных языков программирования (Паскаль, Школьный алгоритмический язык и др.): правила представления данных; правила записи основных операторов (ввод, вывод, присваивание, ветвление, цикл) и вызова вспомогательных алгоритмов; правила записи программы.

Этапы решения задачи на компьютере: моделирование — разработка алгоритма — запись программы — компьютерный эксперимент. Решение задач по разработке и выполнению программ в выбранной среде программирования.

Раздел 3. Информационныеи коммуникационные технологии

Компьютер как универсальное устройство обработки информации.

Основные компоненты персонального компьютера (процессор, оперативная и долговременная память, устройства ввода и вывода информации), их функции и основные характеристики (по состоянию на текущий период времени).

Программный принцип работы компьютера.

Состав и функции программного обеспечения: системное программное обеспечение, прикладное программное обеспечение, системы программирования. Правовые нормы использования программного обеспечения.

Файл. Каталог (папка). Файловая система.

Графический пользовательский интерфейс (рабочий стол, окна, диалоговые окна, меню). Оперирование компьютерными информационными объектами в нагляднографической форме: создание, именование, сохранение, удаление объектов, организация их семейств. Стандартизация пользовательского интерфейса персонального компьютера.

Размер файла. Архивирование файлов.

Гигиенические, эргономические и технические условия безопасной эксплуатации компьютера.

Обработка текстов. Текстовые документы и их структурные единицы (раздел, абзац, строка, слово, символ). Технологии создания текстовых документов. Создание и редактирование текстовых документов на компьютере (вставка, удаление и замена символов, работа с фрагментами текстов, проверка правописания, расстановка переносов). Форматирование символов (шрифт, размер, начертание, цвет). Форматирование абзацев первой (выравнивание, отступ строки, междустрочный интервал). Стилевое форматирование. Включение в текстовый документ списков, таблиц, диаграмм, формул и графических объектов. Гипертекст. Создание ссылок: сносок, оглавлений, предметных указателей. Инструменты распознавания компьютерного текстов И Коллективная работа над документом. Примечания. Запись и выделение изменений. Форматирование страниц документа. Ориентация, размеры страницы, величина полей.

Нумерация страниц. Колонтитулы. Сохранение документа в различных текстовых форматах.

Графическая информация. Формирование изображения на экране монитора. Компьютерное представление цвета. Компьютерная графика (растровая, векторная). Интерфейс графических редакторов. Форматы графических файлов.

Мультимедиа. Понятие технологии мультимедиа и области ее применения. Звук и видео как составляющие мультимедиа. Компьютерные презентации. Дизайн презентации и макеты слайдов. Звуковая и видеоинформация.

Электронные (динамические) таблицы. Использование формул. Относительные, абсолютные и смешанные ссылки. Выполнение расчетов. Построение графиков и диаграмм. Понятие о сортировке (упорядочении) данных.

Реляционные базы данных. Основные понятия, типы данных, системы управления базами данных и принципы работы с ними. Ввод и редактирование записей. Поиск, удаление и сортировка данных.

Коммуникационные технологии. Локальные и глобальные компьютерные сети. Интернет. Браузеры. Взаимодействие на основе компьютерных сетей: электронная почта, чат, форум, телеконференция, сайт. Информационные ресурсы компьютерных сетей: Всемирная паутина, файловые архивы, компьютерные энциклопедии и справочники. Поиск информации в файловой системе, базе данных, Интернете. Средства поиска информации: компьютерные каталоги, поисковые машины, запросы по одному и нескольким признакам.

Проблема достоверности полученной информация. Возможные неформальные подходы к оценке достоверности информации (оценка надежности источника, сравнение данных из разных источников и в разные моменты времени и т. п.). Формальные подходы к доказательству достоверности полученной информации, предоставляемые современными ИКТ: электронная подпись, центры сертификации, сертифицированные сайты и документы и др.

Основы социальной информатики. Роль информации и ИКТ в жизни человека и общества. Примеры применения ИКТ: связь, информационные услуги, научнотехнические исследования, управление производством и проектирование промышленных изделий, анализ экспериментальных данных, образование (дистанционное обучение, образовательные источники).

Основные этапы развития ИКТ.

Информационная безопасность личности, государства, общества. Защита собственной информации от несанкционированного доступа. Компьютерные вирусы. Антивирусная профилактика. Базовые представления о правовых и этических аспектах использования компьютерных программ и работы в сети Интернет. Возможные негативные последствия (медицинские, социальные) повсеместного применения ИКТ в современном обществе.

Учебно-тематический план

№	Название темы	Количество часов		
		общее	теория	практика
1	Информация и информационные процессы	9	6	3
2	Компьютер как универсальное устройство обработки информации	7	4	3
3	Обработка графической информации	4	2	2
4	Обработка текстовой информации	9	3	6
5	Мультимедиа	4	1	3
6	Математические основы информатики	13	10	3
7	Основы алгоритмизации	10	6	4
8	Начала программирования	10	2	8
9	Моделирование и формализация	12	6	6
10	Алгоритмизация и программирование	18	6	12
11	Обработка числовой информации	11	4	7
12	Коммуникационные технологии	11	7	4
13	Итоговое повторение	11	5	6
	Резерв	7	0	7
	Итого:	136	62	74

Учебные занятия проводятся в виде лекций, консультаций, семинаров, практических занятий, лабораторных работ, контрольных и самостоятельных работ.

При проведении уроков используются следующие технологии обучения:

- проблемное обучение (от поставленной задачи к поиску методов и средств достижения результата)
 - поэтапное формирование умственных действий
- дифференцированное обучение (в УМК предусмотрены разноуровневые задания)
 - компьютерные технологии
 - технологии интерактивного обучения

Формы контроля знаний

На уроках информатики используются текущий, тематический и итоговый контроль.

Текущий контроль — наиболее простой для учителя способ получить оперативную информацию о знаниях обучаемых, который создает условия для своевременной их коррекции. Текущий контроль осуществляется в повседневной работе с целью проверки усвоения предыдущего материала и выявления пробелов в знаниях учащихся.

Тематический контроль выявляет степень усвоения выделенной темы программы. Тематический контроль осуществляется периодически по мере прохождения новой темы, раздела и имеет целью систематизацию знаний обучаемых.

Итоговый контроль осуществляется во время заключительного повторения в конце учебного года. Формой итоговой оценки является отметка в результате выполнения итогового теста.

Методы контроля знаний

Устный опрос – наиболее распространенный метод контроля знаний учащихся. При устном опросе устанавливается непосредственный контакт между учителем и учащимся, в процессе которого учитель получает широкие возможности для изучения индивидуальных особенностей усвоения учащимися учебного материала.

Используются фронтальный, индивидуальный и комбинированный опрос. Фронтальный опрос проводится в форме беседы учителя с классом. Он являясь средством для закрепления знаний и умений. Его достоинство в том, что в активную умственную работу можно вовлечь всех учащихся класса. С помощью фронтального опроса есть возможность проверить выполнение учащимися домашнего задания, выяснить готовность класса к изучению нового материала. Фронтальный опрос используется также перед проведением практических работ, так как он позволяет проверить подготовленность учащихся к их выполнению.

Устный опрос как метод контроля знаний, умений и навыков требует больших затрат времени, кроме того, по одному и тому же вопросу нельзя проверять всех учащихся. Поэтому в целях рационального использования учебного времени проводится комбинированный опрос, сочетающий устный опрос с другими методами: письменным опросом по карточкам, с самостоятельной работой. Все это позволяет при тех же затратах времени проконтролировать работу большого количества учащихся. Так, пока одни работают у доски, другие – решают задачи, выполняют письменную работу, отвечают на поставленные вопросы с места.

В старших классах используется рейтинговая система оценки знаний. Такая система оценки знаний позволяет ученику быть более активным в учебной деятельности, предупреждает пробелы в знаниях.

Тестовый контроль на уроке информатики

Задача усовершенствования преподавания информатики включает использование различных методов обучения и контроля. Один из таких методов – тестовый контроль знаний учащихся. Использование тестов на уроке вносит разнообразие в учебную работу, повышает интерес к предмету, способствуя тем самым лучшему усвоению знаний.

Тестирование используется для оперативной проверки качества знаний учащихся с возможностью машинного ввода ответов и автоматизированной обработки результата. Тестовая технология является быстрым и надежным способом проверки уровня и степени подготовки учащихся путем решения несложных заданий, выбора варианта ответа или добавления слов, формул, терминов и пр.

Преимуществом тестирования является возможность охвата материала по всем разделам информатики. Оценивание результатов носит более объективный характер и не зависит от профессиональных и личностный качеств учителя. В результате сокращаются временные затраты на проверку знаний. Тестовый контроль дает возможность при незначительных затратах аудиторного времени проверить всех учащихся.

На уроках для компьютерного тестирования применяем Интернет в режиме on-line. Тестовые системы позволяют индивидуализировать процесс оценки знаний учащихся, развивать способность учащихся к самооценке.

Контроль знаний учащихся тесно связан с оценкой. Более того, это необходимый элемент контроля знаний учащихся. От объективности оценки, положительной мотивации зависит общий настрой учащегося, его желание заниматься в дальнейшем, а значит и качество приобретаемых знаний.

При оценке знаний необходимо учитывать основные качественные характеристики овладения учебным материалом: имеющиеся у учащихся фактические знания и умения, их полноту, прочность, умение применять на практике в различных ситуациях, владение терминологией и специфическими способами обозначения и записи.

Результат оценки зависит от наличия и характера погрешностей, допущенных при устном ответе или в письменной работе. Среди погрешностей можно выделить ошибки, недочеты и мелкие погрешности.

Погрешность считается ошибкой, если она свидетельствует о том, что ученик не овладел основными знаниями и умениями и их применением.

К недочетам относятся погрешности, свидетельствующие о недостаточно прочном усвоении основных знаний и умений или отсутствии знаний, которые в соответствии с программой не считаются основными. Недочетом также считается погрешность, которая могла бы расцениваться как ошибка, но допущена в одних случаях и не допущена в других аналогичных случаях. К недочетам относятся погрешности, объясняемые рассеянностью или недосмотром, небрежная запись.

К мелким погрешностям относятся погрешности в устной и письменной речи, не искажающие смысла ответа или решения, случайные описки и т.п.

К ошибкам, например, относятся: неправильное использование служебных слов алгоритмического языка; неверное указание аргументов и результатов; присваивание величине одного типа значения другого типа; нарушение порядка выполнения команд при исполнении алгоритма и т. п.

Примеры недочетов: пропуск или неправильная запись служебного слова алгоритмического языка; описаны не все промежуточные величины; случайные вычислительные погрешности при проверке условий составных команд; небрежное оформление записи алгоритма и т. п.

Задание считается выполненным безупречно, если содержание ответа точно соответствует вопросу, указывает на наличие у школьника необходимых теоретических знаний и практических навыков, окончательный ответ дан при правильном ходе решения и аккуратном оформлении.

Задание считается невыполненным, если ученик не приступил к его выполнению или допустил в нем погрешность, считающуюся в соответствии с целью работы ошибкой.

Примерные нормы оценок:

Положительная оценка («3», «4», «5») выставляется, когда ученик показал владение основным программным материалом. Оценка «5» выставляется при условии безупречного ответа либо при наличии 1-2 мелких погрешностей, «4» - при наличии 1-2 недочетов. Неудовлетворительная оценка («1», «2») выставляется в том случае, когда ученик показал неусвоение основного программного материала.

Оценка за усвоение темы выставляется на основе всех текущих отметок. Особый вес придается оценкам за итоговую контрольную работу или ответы учащихся на зачетном занятии по всей теме. Годовая оценка должна отражать фактический уровень знаний учащихся на конец учебного года